

3.1 Complex Numbers

Types of numbers:

Complex:

Real:

Rational:

Irrational:

Integers:

Whole:

Natural:

Complex numbers written in standard form:

Ex1: Simplify

1. $\sqrt{-25}$
2. $\sqrt{-32x^2}$
3. $\sqrt{-72m^3p^4}$

Key notes: Copy this chart!

- $i =$
- $i^2 =$
- $i^3 =$
- $i^4 =$

Ex2: find the values of x and y that satisfy the equations:

1. $2x - 7i = 10 + yi$

2. $9 + 4yi = -2x + 3i$

Ex3: Adding and Subtracting Complex Numbers

1. $(8 - i) + (5 + 4i)$

2. $(7 - 6i) - (3 - 6i)$

Ex4: Multiplying complex numbers:

1. $4i(-6 + i)$

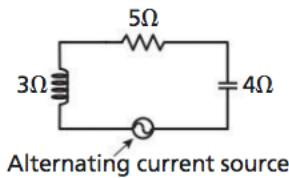
2. $(9 - 2i)(-4 + 7i)$

Ex5: Solving Quadratics

$$1. \ x^2 + 4 = 0$$

$$2. \ 2x^2 - 11 = -47$$

Ex6: Finding Zeros of a Quadratic


Find the zeros of $f(x) = 4x^2 + 20$

Check!

Ex7: Real world problems:

Electrical circuit components, such as resistors, inductors, and capacitors, all oppose the flow of current. This opposition is called *resistance* for resistors and *reactance* for inductors and capacitors. Each of these quantities is measured in ohms. The symbol used for ohms is Ω , the uppercase Greek letter omega.

Component and symbol	Resistor ~~~~~	Inductor ~~~~~	Capacitor
Resistance or reactance (in ohms)	R	L	C
Impedance (in ohms)	R	Li	$-Ci$

The table shows the relationship between a component's resistance or reactance and its contribution to impedance. A *series circuit* is also shown with the resistance or reactance of each component labeled. The impedance for a series circuit is the sum of the impedances for the individual components. Find the impedance of the circuit.

Homework: 5, 9, 14, 18, 20, 31, 35, 37-43 odd, 49-61 odd