

4.5 Solving Polynomial Equations

Finding solutions and zeros.

Recall the *Zero-Product Property* to solve factorable quadratic equations.

Example 1: Solving a Polynomial Equation by Factoring

Solve $2x^3 - 12x^2 + 18x = 0$

Look at the solutions! What do you notice about the zeros?

Key Notes!!!

When a factor $x - k$ of $f(x)$ is raised to an odd power the graph CROSSES the x-axis at $x = k$

When a factor $x - k$ of $f(x)$ is raised to an even power the graph TOUCHES the x-axis at $x = k$

Example 2: Finding Zeros of a Polynomial Function

Find the zeros of $f(x) = -2x^4 + 16x^2 - 32$. Then sketch a graph of the function.

(Hint: think of the equation as $f(x) = -2x^2 + 16x - 32$)

Rational Root Theorem!

Core Concept

The Rational Root Theorem

If $f(x) = a_nx^n + \dots + a_1x + a_0$ has *integer* coefficients, then every rational solution of $f(x) = 0$ has the following form:

$$\frac{p}{q} = \frac{\text{factor of constant term } a_0}{\text{factor of leading coefficient } a_n}$$

Example 3: Using the rational root theorem

Find all real solutions of $x^3 - 8x^2 + 11x + 20 = 0$

Try on your own:

Find all real solutions of $x^3 + x^2 - 14x - 24 = 0$

Example 4: Finding Zeros of a Polynomial Function

Find all real zeros of $f(x) = 10x^4 - 11x^3 - 42x^2 + 7x + 12$

Core Concept

The Irrational Conjugates Theorem

Let f be a polynomial function with rational coefficients, and let a and b be rational numbers such that \sqrt{b} is irrational. If $a + \sqrt{b}$ is a zero of f , then $a - \sqrt{b}$ is also a zero of f .

Example 5: Using zeros to write a polynomial function.

Write a polynomial function f of least degree that has rational coefficients, a leading coefficient of 1, and the zeros 3 and $2 + \sqrt{5}$

Homework

3-17 odd, 25, 28, 29, 33, 35, 39, 42, 43, 46, 50

4.5 Exercises

Dynamic Solutions available at BigIdeasMath.com

Vocabulary and Core Concept Check

1. **COMPLETE THE SENTENCE** If a polynomial function f has integer coefficients, then every rational solution of $f(x) = 0$ has the form $\frac{p}{q}$, where p is a factor of the _____ and q is a factor of the _____.

2. **DIFFERENT WORDS, SAME QUESTION** Which is different? Find “both” answers.

Find the y -intercept of the graph of $y = x^3 - 2x^2 - x + 2$.

Find the x -intercepts of the graph of $y = x^3 - 2x^2 - x + 2$.

Find all the real solutions of $x^3 - 2x^2 - x + 2 = 0$.

Find the real zeros of $f(x) = x^3 - 2x^2 - x + 2$.

Monitoring Progress and Modeling with Mathematics

In Exercises 3–12, solve the equation. (See Example 1.)

3. $z^3 - z^2 - 12z = 0$ 4. $a^3 - 4a^2 + 4a = 0$
5. $2x^4 - 4x^3 = -2x^2$ 6. $v^3 - 2v^2 - 16v = -32$
7. $5w^3 = 50w$ 8. $9m^5 = 27m^3$
9. $2c^4 - 6c^3 = 12c^2 - 36c$
10. $p^4 + 40 = 14p^2$
11. $12n^2 + 48n = -n^3 - 64$
12. $y^3 - 27 = 9y^2 - 27y$

In Exercises 13–20, find the zeros of the function. Then sketch a graph of the function. (See Example 2.)

13. $h(x) = x^4 + x^3 - 6x^2$
14. $f(x) = x^4 - 18x^2 + 81$
15. $p(x) = x^6 - 11x^5 + 30x^4$
16. $g(x) = -2x^5 + 2x^4 + 40x^3$
17. $g(x) = -4x^4 + 8x^3 + 60x^2$
18. $h(x) = -x^3 - 2x^2 + 15x$
19. $h(x) = -x^3 - x^2 + 9x + 9$
20. $p(x) = x^3 - 5x^2 - 4x + 20$

21. **USING EQUATIONS** According to the Rational Root Theorem, which is *not* a possible solution of the equation $2x^4 - 5x^3 + 10x^2 - 9 = 0$?

(A) -9 (B) $-\frac{1}{2}$ (C) $\frac{5}{2}$ (D) 3

22. **USING EQUATIONS** According to the Rational Root Theorem, which is *not* a possible zero of the function $f(x) = 40x^5 - 42x^4 - 107x^3 + 107x^2 + 33x - 36$?

(A) $-\frac{2}{3}$ (B) $-\frac{3}{8}$ (C) $\frac{3}{4}$ (D) $\frac{4}{5}$

ERROR ANALYSIS In Exercises 23 and 24, describe and correct the error in listing the possible rational zeros of the function.

23. $f(x) = x^3 + 5x^2 - 9x - 45$
Possible rational zeros of f :
 $1, 3, 5, 9, 15, 45$

24. $f(x) = 3x^3 + 13x^2 - 41x + 8$
Possible rational zeros of f :
 $\pm 1, \pm 3, \pm \frac{1}{2}, \pm \frac{1}{4}, \pm \frac{1}{8}, \pm \frac{3}{2}, \pm \frac{3}{4}, \pm \frac{3}{8}$

In Exercises 25–32, find all the real solutions of the equation. (See Example 3.)

25. $x^3 + x^2 - 17x + 15 = 0$
26. $x^3 - 2x^2 - 5x + 6 = 0$

27. $x^3 - 10x^2 + 19x + 30 = 0$

28. $x^3 + 4x^2 - 11x - 30 = 0$

29. $x^3 - 6x^2 - 7x + 60 = 0$

30. $x^3 - 16x^2 + 55x + 72 = 0$

31. $2x^3 - 3x^2 - 50x - 24 = 0$

32. $3x^3 + x^2 - 38x + 24 = 0$

In Exercises 33–38, find all the real zeros of the function. (See Example 4.)

33. $f(x) = x^3 - 2x^2 - 23x + 60$

34. $g(x) = x^3 - 28x - 48$

35. $h(x) = x^3 + 10x^2 + 31x + 30$

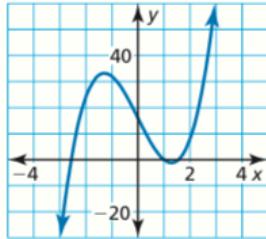
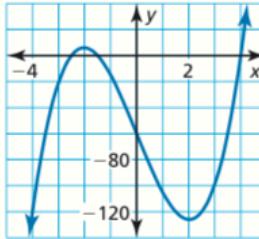
36. $f(x) = x^3 - 14x^2 + 55x - 42$

37. $p(x) = 2x^3 - x^2 - 27x + 36$

38. $g(x) = 3x^3 - 25x^2 + 58x - 40$

USING TOOLS In Exercises 39 and 40, use the graph to shorten the list of possible rational zeros of the function. Then find all real zeros of the function.

39. $f(x) = 4x^3 - 20x + 16$ 40. $f(x) = 4x^3 - 49x - 60$



In Exercises 41–46, write a polynomial function f of least degree that has a leading coefficient of 1 and the given zeros. (See Example 5.)

41. $-2, 3, 6$

42. $-4, -2, 5$

43. $-2, 1 + \sqrt{7}$

44. $4, 6 - \sqrt{7}$

45. $-6, 0, 3 - \sqrt{5}$

46. $0, 5, -5 + \sqrt{8}$

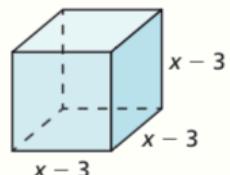
47. **COMPARING METHODS** Solve the equation $x^3 - 4x^2 - 9x + 36 = 0$ using two different methods. Which method do you prefer? Explain your reasoning.

48. **REASONING** Is it possible for a cubic function to have more than three real zeros? Explain.

49. **PROBLEM SOLVING** At a factory, molten glass is poured into molds to make paperweights. Each mold is a rectangular prism with a height 3 centimeters greater than the length of each side of its square base. Each mold holds 112 cubic centimeters of glass. What are the dimensions of the mold?

50. **MATHEMATICAL CONNECTIONS** The volume of the cube shown is 8 cubic centimeters.

a. Write a polynomial equation that you can use to find the value of x .



b. Identify the possible rational solutions of the equation in part (a).

c. Use synthetic division to find a rational solution of the equation. Show that no other real solutions exist.

d. What are the dimensions of the cube?

51. **PROBLEM SOLVING** Archaeologists discovered a huge hydraulic concrete block at the ruins of Caesarea with a volume of 945 cubic meters. The block is x meters high by $12x - 15$ meters long by $12x - 21$ meters wide. What are the dimensions of the block?

52. **MAKING AN ARGUMENT** Your friend claims that when a polynomial function has a leading coefficient of 1 and the coefficients are all integers, every possible rational zero is an integer. Is your friend correct? Explain your reasoning.

53. **MODELING WITH MATHEMATICS** During a 10-year period, the amount (in millions of dollars) of athletic equipment E sold domestically can be modeled by $E(t) = -20t^3 + 252t^2 - 280t + 21,614$, where t is in years.

a. Write a polynomial equation to find the year when about \$24,014,000,000 of athletic equipment is sold.

b. List the possible whole-number solutions of the equation in part (a). Consider the domain when making your list of possible solutions.

c. Use synthetic division to find when \$24,014,000,000 of athletic equipment is sold.