

4.6 The Fundamental Theorem of Algebra

The Fundamental Theorem of Algebra

Equation	Degree	Solution(s)	Number of solutions
$2x - 1 = 0$	1	$\frac{1}{2}$	1
$x^2 - 2 = 0$	2	$\pm\sqrt{2}$	2
$x^3 - 8 = 0$	3	$2, -1 \pm i\sqrt{3}$	3
$x^3 + x^2 - x - 1 = 0$	3	$-1, -1, 1$	3

(First proven by German mathematician Carl Friedrich Gauss 1777-1855)

Core Concept

The Fundamental Theorem of Algebra

Theorem If $f(x)$ is a polynomial of degree n where $n > 0$, then the equation $f(x) = 0$ has at least one solution in the set of complex numbers.

Corollary If $f(x)$ is a polynomial of degree n where $n > 0$, then the equation $f(x) = 0$ has exactly n solutions provided each solution repeated twice is counted as two solutions, each solution repeated three times is counted as three solutions, and so on.

Example 1: Finding the number or solutions or zeros

- 1) How many solutions does the equation $x^3 + 3x^2 + 16x + 48 = 0$ have?
- 2) How many zeros does the function $f(x) = x^4 + 6x^3 + 12x^2 + 8x$ have?

Example 2: Finding the zeros of a polynomial function

Find all zeros of $f(x) = x^5 + x^3 - 2x^2 - 12x - 8$ (hint: use your calc to view the graph)

Complex Conjugates

Core Concept

The Complex Conjugates Theorem

If f is a polynomial function with real coefficients, and $a + bi$ is an imaginary zero of f , then $a - bi$ is also a zero of f .

Example 3: Using zeros to write a Polynomial Function

Write a polynomial function f of least degree that has rational coefficients, a leading coefficient of 1, and the zeros 2 and $3 + i$

Rene' Descartes (1596-1650)

Core Concept

Descartes's Rule of Signs

Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$ be a polynomial function with real coefficients.

- The number of *positive real zeros* of f is equal to the number of changes in sign of the coefficients of $f(x)$ or is less than this by an even number.
- The number of *negative real zeros* of f is equal to the number of changes in sign of the coefficients of $f(-x)$ or is less than this by an even number.

Example 4: Using Descartes's rule of signs

Determine the possible numbers of positive real zeros, negative real zeros, and imaginary zeros for:

$$f(x) = x^6 - 2x^5 + 3x^4 - 10x^3 - 6x^2 - 8x - 8$$

What are all the possible numbers of zeros for the function above:

Positive real zeros	Negative real zeros	Imaginary zeros	Total zeros
3	3	0	6
3	1	2	6
1	3	2	6
1	1	4	6

Example 5: Real World Applications

In Devin's mini cooper the tachometer measures the speed (in revolutions per minute, RPMs) at which an engine shaft rotates. For this certain car the speed x (in hundreds of RPMs) of the engine shaft and the speed s (in miles per hour) of the mini coop are modeled by:

$$s(x) = 0.00547x^3 - 0.225x^2 + 3.62x - 11$$

What is the tachometer reading when the mini cooper travels 15mph?

(We all know Devin will never drive 15mph... 0 to 100... real quick!)

Homework

3-8, 10, 13, 15, 17-20, 22, 25, 28, 33, 36, 39, 44

4.6 Exercises

Dynamic Solutions available at BigIdeasMath.com

Vocabulary and Core Concept Check

1. **COMPLETE THE SENTENCE** The expressions $5 + i$ and $5 - i$ are _____.
2. **WRITING** How many solutions does the polynomial equation $(x + 8)^3(x - 1) = 0$ have? Explain.

Monitoring Progress and Modeling with Mathematics

In Exercises 3–8, identify the number of solutions or zeros. (See Example 1.)

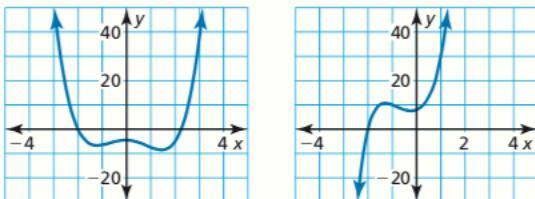
3. $x^4 + 2x^3 - 4x^2 + x = 0$
4. $5y^3 - 3y^2 + 8y = 0$
5. $9t^6 - 14t^3 + 4t - 1 = 0$
6. $f(z) = -7z^4 + z^2 - 25$
7. $g(s) = 4s^5 - s^3 + 2s^7 - 2$
8. $h(x) = 5x^4 + 7x^8 - x^{12}$

In Exercises 9–16, find all zeros of the polynomial function. (See Example 2.)

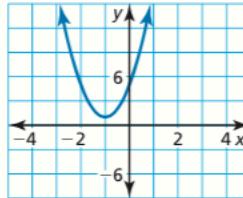
9. $f(x) = x^4 - 6x^3 + 7x^2 + 6x - 8$
10. $f(x) = x^4 + 5x^3 - 7x^2 - 29x + 30$
11. $g(x) = x^4 - 9x^2 - 4x + 12$
12. $h(x) = x^3 + 5x^2 - 4x - 20$
13. $g(x) = x^4 + 4x^3 + 7x^2 + 16x + 12$
14. $h(x) = x^4 - x^3 + 7x^2 - 9x - 18$
15. $g(x) = x^5 + 3x^4 - 4x^3 - 2x^2 - 12x - 16$
16. $f(x) = x^5 - 20x^3 + 20x^2 - 21x + 20$

ANALYZING RELATIONSHIPS In Exercises 17–20, determine the number of imaginary zeros for the function with the given degree and graph. Explain your reasoning.

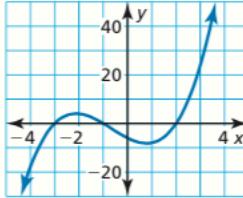
17. Degree: 4
18. Degree: 5



19. Degree: 2



20. Degree: 3



In Exercises 21–28, write a polynomial function f of least degree that has rational coefficients, a leading coefficient of 1, and the given zeros. (See Example 3.)

21. $-5, -1, 2$
22. $-2, 1, 3$
23. $3, 4 + i$
24. $2, 5 - i$
25. $4, -\sqrt{5}$
26. $3i, 2 - i$
27. $2, 1 + i, 2 - \sqrt{3}$
28. $3, 4 + 2i, 1 + \sqrt{7}$

ERROR ANALYSIS In Exercises 29 and 30, describe and correct the error in writing a polynomial function with rational coefficients and the given zero(s).

29. Zeros: $2, 1 + i$

$$\begin{aligned} f(x) &= (x - 2)[x - (1 + i)] \\ &= x(x - 1 - i) - 2(x - 1 - i) \\ &= x^2 - x - ix - 2x + 2 + 2i \\ &= x^2 - (3 + i)x + (2 + 2i) \end{aligned}$$

30. Zero: $2 + i$

$$\begin{aligned} f(x) &= [x - (2 + i)][x + (2 + i)] \\ &= (x - 2 - i)(x + 2 + i) \\ &= x^2 + 2x + ix - 2x - 4 - 2i - ix - 2i - i^2 \\ &= x^2 - 4i - 3 \end{aligned}$$

31. **OPEN-ENDED** Write a polynomial function of degree 6 with zeros 1, 2, and $-i$. Justify your answer.

32. **REASONING** Two zeros of $f(x) = x^3 - 6x^2 - 16x + 96$ are 4 and -4 . Explain why the third zero must also be a real number.

In Exercises 33–40, determine the possible numbers of positive real zeros, negative real zeros, and imaginary zeros for the function. (See Example 4.)

33. $g(x) = x^4 - x^2 - 6$

34. $g(x) = -x^3 + 5x^2 + 12$

35. $g(x) = x^3 - 4x^2 + 8x + 7$

36. $g(x) = x^5 - 2x^3 - x^2 + 6$

37. $g(x) = x^5 - 3x^3 + 8x - 10$

38. $g(x) = x^5 + 7x^4 - 4x^3 - 3x^2 + 9x - 15$

39. $g(x) = x^6 + x^5 - 3x^4 + x^3 + 5x^2 + 9x - 18$

40. $g(x) = x^7 + 4x^4 - 10x + 25$

41. **REASONING** Which is *not* a possible classification of zeros for $f(x) = x^5 - 4x^3 + 6x^2 + 2x - 6$? Explain.

- (A) three positive real zeros, two negative real zeros, and zero imaginary zeros
- (B) three positive real zeros, zero negative real zeros, and two imaginary zeros
- (C) one positive real zero, four negative real zeros, and zero imaginary zeros
- (D) one positive real zero, two negative real zeros, and two imaginary zeros

42. **USING STRUCTURE** Use Descartes's Rule of Signs to determine which function has at least 1 positive real zero.

- (A) $f(x) = x^4 + 2x^3 - 9x^2 - 2x - 8$
- (B) $f(x) = x^4 + 4x^3 + 8x^2 + 16x + 16$
- (C) $f(x) = -x^4 - 5x^2 - 4$
- (D) $f(x) = x^4 + 4x^3 + 7x^2 + 12x + 12$

43. **MODELING WITH MATHEMATICS** From 1890 to 2000, the American Indian, Eskimo, and Aleut population P (in thousands) can be modeled by the function $P = 0.004t^3 - 0.24t^2 + 4.9t + 243$, where t is the number of years since 1890. In which year did the population first reach 722,000? (See Example 5.)

44. **MODELING WITH MATHEMATICS** Over a period of 14 years, the number N of inland lakes infested with zebra mussels in a certain state can be modeled by

$$N = -0.0284t^4 + 0.5937t^3 - 2.464t^2 + 8.33t - 2.5$$

where t is time (in years). In which year did the number of infested inland lakes first reach 120?

45. **MODELING WITH MATHEMATICS** For the 12 years that a grocery store has been open, its annual revenue R (in millions of dollars) can be modeled by the function

$$R = 0.0001(-t^4 + 12t^3 - 77t^2 + 600t + 13,650)$$

where t is the number of years since the store opened. In which year(s) was the revenue \$1.5 million?

46. **MAKING AN ARGUMENT** Your friend claims that $2 - i$ is a complex zero of the polynomial function $f(x) = x^3 - 2x^2 + 2x + 5i$, but that its conjugate is *not* a zero. You claim that both $2 - i$ and its conjugate *must* be zeros by the Complex Conjugates Theorem. Who is correct? Justify your answer.

47. **MATHEMATICAL CONNECTIONS** A solid monument with the dimensions shown is to be built using 1000 cubic feet of marble. What is the value of x ?

