

4.7 Transformations of Polynomial Functions

Describing Transformations of Polynomial Functions

Core Concept

Transformation	$f(x)$ Notation	Examples	
Horizontal Translation Graph shifts left or right.	$f(x - h)$	$g(x) = (x - 5)^4$	5 units right
		$g(x) = (x + 2)^4$	2 units left
Vertical Translation Graph shifts up or down.	$f(x) + k$	$g(x) = x^4 + 1$	1 unit up
		$g(x) = x^4 - 4$	4 units down
Reflection Graph flips over x - or y -axis.	$f(-x)$ $-f(x)$	$g(x) = (-x)^4 = x^4$	over y -axis
		$g(x) = -x^4$	over x -axis
Horizontal Stretch or Shrink Graph stretches away from or shrinks toward y -axis.	$f(ax)$	$g(x) = (2x)^4$ $g(x) = \left(\frac{1}{2}x\right)^4$	shrink by a factor of $\frac{1}{2}$ stretch by a factor of 2
Vertical Stretch or Shrink Graph stretches away from or shrinks toward x -axis.	$a \cdot f(x)$	$g(x) = 8x^4$ $g(x) = \frac{1}{4}x^4$	stretch by a factor of 8 shrink by a factor of $\frac{1}{4}$

Example 1: Translating a Polynomial Function

Describe the transformation of $f(x) = x^3$ represented by $g(x) = (x + 5)^3 + 2$.
(look at a graph to check your answer)

Example 2: Transforming Polynomial Functions

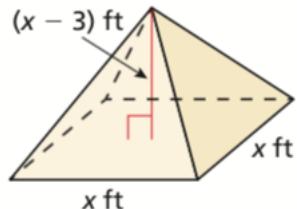
a) $f(x) = x^4, g(x) = -\frac{1}{4}x^4$

b) $f(x) = x^5, g(x) = (2x)^5 - 3$

Example 3: Writing Transformed Polynomial Functions

Let $f(x) = x^3 + x^2 + 1$. Write a rule for g and then graph each function. Describe the graph of g as a transformation of the graph f .

a) $g(x) = f(-x)$


b) $g(x) = 3f(x)$

Example 4: Writing a Transformed Polynomial Function

Let the graph of g be a vertical stretch by a factor of 2, followed by a translation 3 units up of the graph $f(x) = x^4 - 2x^2$. Write a rule (The function) for g .

Example 5: Modeling with Mathematics

The function $V(x) = \frac{1}{3}x^3 - x^2$ represents the volume (in cubic feet) of the square pyramid shown. The function $W(x) = V(3x)$ represents the volume (in cubic feet) when x is measured in yards. Write a rule for W . Find and interpret $W(10)$.

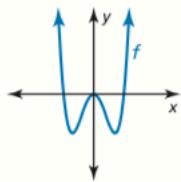
Homework
3-10, 11, 14, 15, 17, 19, 23, 25, 26, 27, 33

Alt-HW
3-33, Skip: 29 & 31

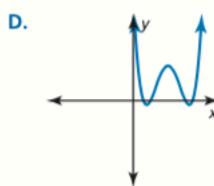
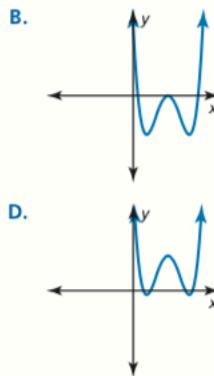
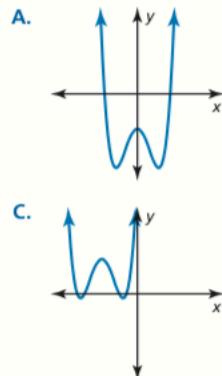
4.7 Exercises

Dynamic Solutions available at BigIdeasMath.com

Vocabulary and Core Concept Check


1. **COMPLETE THE SENTENCE** The graph of $f(x) = (x + 2)^3$ is a _____ translation of the graph of $f(x) = x^3$.
2. **VOCABULARY** Describe how the vertex form of quadratic functions is similar to the form $f(x) = a(x - h)^3 + k$ for cubic functions.

Monitoring Progress and Modeling with Mathematics

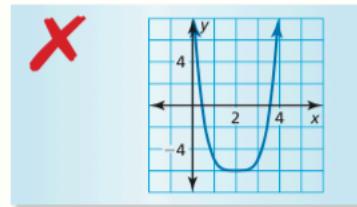



In Exercises 3–6, describe the transformation of f represented by g . Then graph each function. (See Example 1.)

3. $f(x) = x^4, g(x) = x^4 + 3$
4. $f(x) = x^4, g(x) = (x - 5)^4$
5. $f(x) = x^5, g(x) = (x - 2)^5 - 1$
6. $f(x) = x^6, g(x) = (x + 1)^6 - 4$

ANALYZING RELATIONSHIPS In Exercises 7–10, match the function with the correct transformation of the graph of f . Explain your reasoning.

7. $y = f(x - 2)$
8. $y = f(x + 2) + 2$
9. $y = f(x - 2) + 2$
10. $y = f(x) - 2$

Section 4.7 Transformations of Polynomial Functions 209


In Exercises 11–16, describe the transformation of f represented by g . Then graph each function. (See Example 2.)

11. $f(x) = x^4, g(x) = -2x^4$
12. $f(x) = x^6, g(x) = -3x^6$
13. $f(x) = x^3, g(x) = 5x^3 + 1$
14. $f(x) = x^4, g(x) = \frac{1}{2}x^4 + 1$
15. $f(x) = x^5, g(x) = \frac{3}{4}(x + 4)^5$
16. $f(x) = x^4, g(x) = (2x)^4 - 3$

In Exercises 17–20, write a rule for g and then graph each function. Describe the graph of g as a transformation of the graph of f . (See Example 3.)

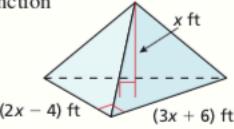
17. $f(x) = x^4 + 1, g(x) = f(x + 2)$
18. $f(x) = x^5 - 2x + 3, g(x) = 3f(x)$
19. $f(x) = 2x^3 - 2x^2 + 6, g(x) = -\frac{1}{2}f(x)$
20. $f(x) = x^4 + x^3 - 1, g(x) = f(-x) - 5$

21. **ERROR ANALYSIS** Describe and correct the error in graphing the function $g(x) = (x + 2)^4 - 6$.

22. ERROR ANALYSIS Describe and correct the error in describing the transformation of the graph of $f(x) = x^5$ represented by the graph of $g(x) = (3x)^5 - 4$.

The graph of g is a horizontal shrink by a factor of 3, followed by a translation 4 units down of the graph of f .

In Exercises 23–26, write a rule for g that represents the indicated transformations of the graph of f . (See Example 4.)


23. $f(x) = x^3 - 6$; translation 3 units left, followed by a reflection in the y -axis

24. $f(x) = x^4 + 2x + 6$; vertical stretch by a factor of 2, followed by a translation 4 units right

25. $f(x) = x^3 + 2x^2 - 9$; horizontal shrink by a factor of $\frac{1}{3}$ and a translation 2 units up, followed by a reflection in the x -axis

26. $f(x) = 2x^5 - x^3 + x^2 + 4$; reflection in the y -axis and a vertical stretch by a factor of 3, followed by a translation 1 unit down

27. **MODELING WITH MATHEMATICS** The volume V (in cubic feet) of the pyramid is given by $V(x) = x^3 - 4x$. The function $W(x) = V(3x)$ gives the volume (in cubic feet) of the pyramid when x is measured in yards. Write a rule for W . (See Example 5.)

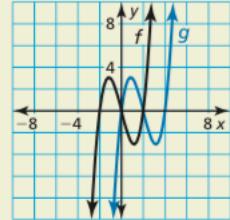
28. **MAKING AN ARGUMENT** The volume of a cube with side length x is given by $V(x) = x^3$. Your friend claims that when you divide the volume in half, the volume decreases by a greater amount than when you divide each side length in half. Is your friend correct? Justify your answer.

29. **OPEN-ENDED** Describe two transformations of the graph of $f(x) = x^5$ where the order in which the transformations are performed is important. Then describe two transformations where the order is *not* important. Explain your reasoning.

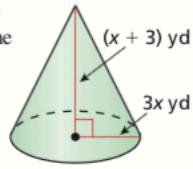
30. **THOUGHT PROVOKING** Write and graph a transformation of the graph of $f(x) = x^5 - 3x^4 + 2x - 4$ that results in a graph with a y -intercept of -2 .

31. **PROBLEM SOLVING** A portion of the path that a hummingbird flies while feeding can be modeled by the function

$$f(x) = -\frac{1}{5}x(x - 4)^2(x - 7), 0 \leq x \leq 7$$


where x is the horizontal distance (in meters) and $f(x)$ is the height (in meters). The hummingbird feeds each time it is at ground level.

a. At what distances does the hummingbird feed?
 b. A second hummingbird feeds 2 meters farther away than the first hummingbird and flies twice as high. Write a function to model the path of the second hummingbird.


32. **HOW DO YOU SEE IT?**

Determine the real zeros of each function. Then describe the transformation of the graph of f that results in the graph of g .

33. **MATHEMATICAL CONNECTIONS**

Write a function V for the volume (in cubic yards) of the right circular cone shown. Then write a function W that gives the volume (in cubic yards) of the cone when x is measured in feet. Find and interpret $W(3)$.

Maintaining Mathematical Proficiency

Reviewing what you learned in previous grades and lessons

Find the minimum value or maximum value of the function. Describe the domain and range of the function, and where the function is increasing and decreasing. (Section 2.2)

34. $h(x) = (x + 5)^2 - 7$

35. $f(x) = 4 - x^2$

36. $f(x) = 3(x - 10)(x + 4)$

37. $g(x) = -(x + 2)(x + 8)$

38. $h(x) = \frac{1}{2}(x - 1)^2 - 3$

39. $f(x) = -2x^2 + 4x - 1$