

Chapter 6

Relationships Within Triangles

6.1 Perpendicular and Angle Bisectors

Using perpendicular bisectors.

What does it mean to be perpendicular?

What does it mean to be a bisector?

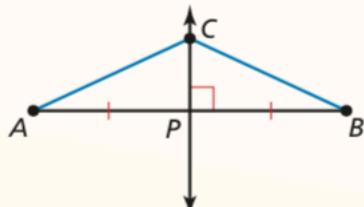
Using Perpendicular Bisectors

Theorems

Theorem 6.1 Perpendicular Bisector Theorem

In a plane, if a point lies on the perpendicular bisector of a segment, then it is equidistant from the endpoints of the segment.

If \overleftrightarrow{CP} is the \perp bisector of \overline{AB} , then $CA = CB$.

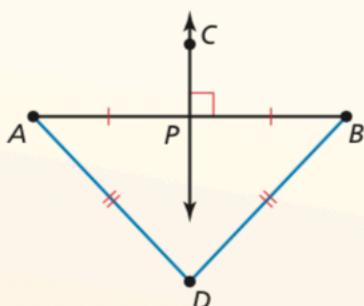


Proof p. 302

Theorem 6.2 Converse of the Perpendicular Bisector Theorem

In a plane, if a point is equidistant from the endpoints of a segment, then it lies on the perpendicular bisector of the segment.

If $DA = DB$, then point D lies on the \perp bisector of \overline{AB} .

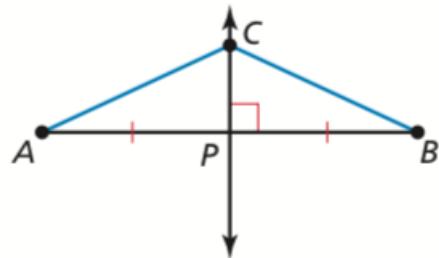


Proof Ex. 32, p. 308

Proving the perpendicular bisector theorem:

Given \overleftrightarrow{CP} is the perpendicular bisector of \overline{AB} .

Prove $CA = CB$



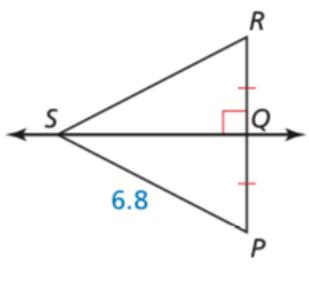
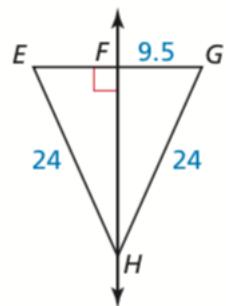
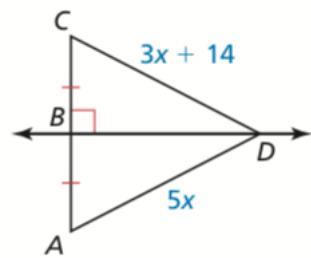
Example 1: Using the perpendicular Bisector Theorems

Find the measure of:

$$RS =$$

$$EG =$$

$$AD =$$



Example 2: Solving a Real World Problem

Is there enough information to conclude that point N lies on the perpendicular bisector of KM?

Using angle bisectors:

We have learned that an Angle Bisector divides an angle into _____

We have also learned that the shortest distance from a point to a line is _____

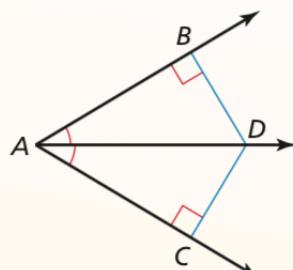
Theorems

Theorem 6.3 Angle Bisector Theorem

If a point lies on the bisector of an angle, then it is equidistant from the two sides of the angle.

If \overrightarrow{AD} bisects $\angle BAC$ and $\overline{DB} \perp \overline{AB}$ and $\overline{DC} \perp \overline{AC}$, then $DB = DC$.

Proof Ex. 33(a), p. 308

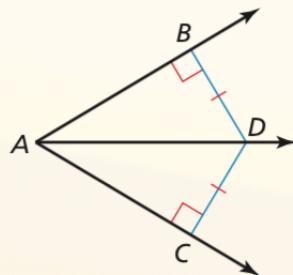


Theorem 6.4 Converse of the Angle Bisector Theorem

If a point is in the interior of an angle and is equidistant from the two sides of the angle, then it lies on the bisector of the angle.

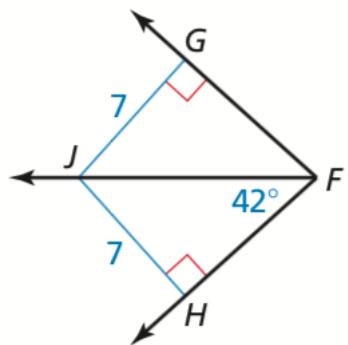
If $\overline{DB} \perp \overline{AB}$ and $\overline{DC} \perp \overline{AC}$ and $DB = DC$, then \overrightarrow{AD} bisects $\angle BAC$.

Proof Ex. 33(b), p. 308

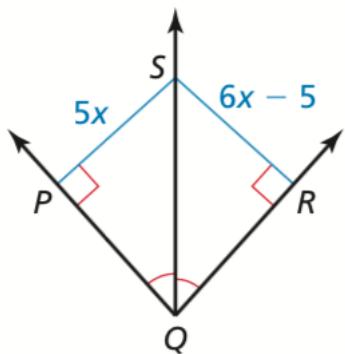


Example 3: Find each measure

a) Measure of angle GFJ

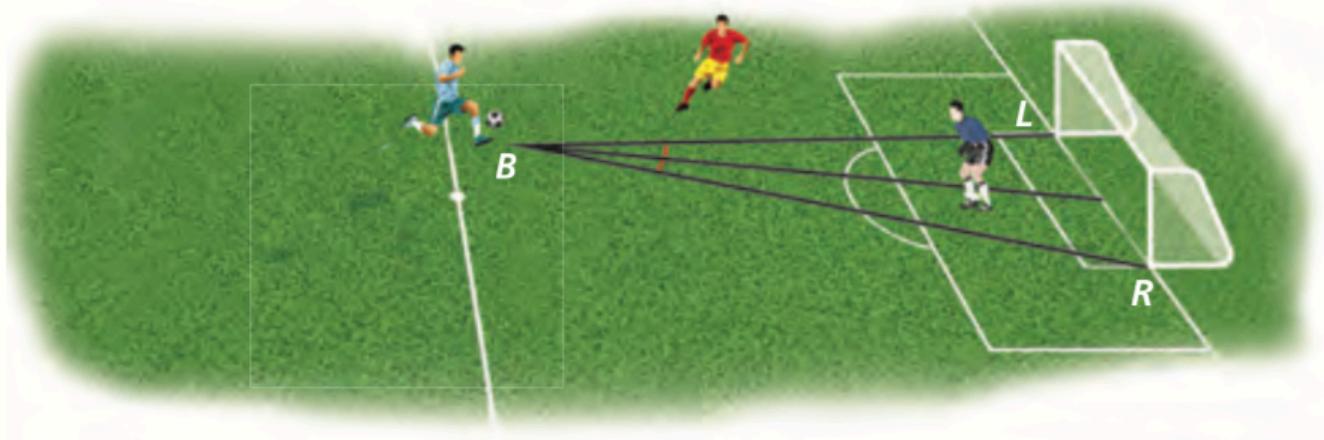


b) Measure of RS



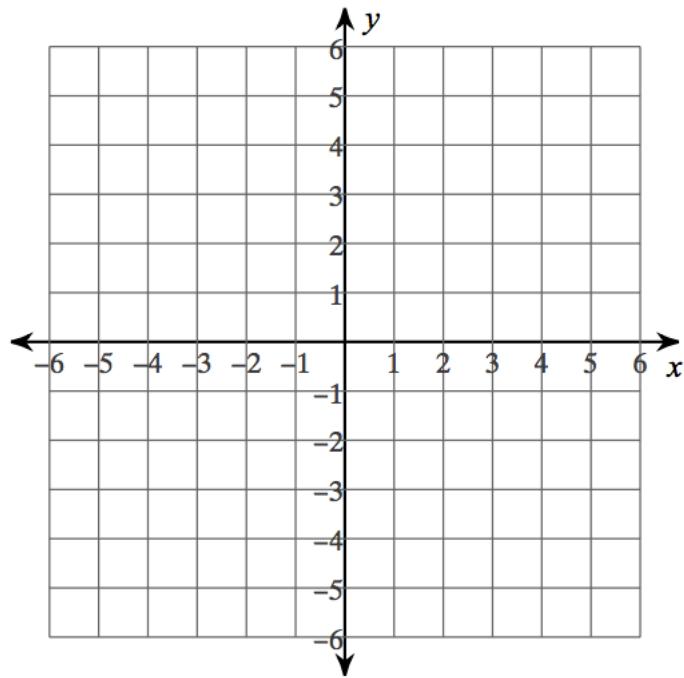
Example 4: Solving Real World Problems

Will the goalie have to move farther to block a shot toward the right goalpost or the left goalpost?



Example 5: Writing an equation for a bisector

Write an equation of the perpendicular bisector of the segment with endpoints $P(-2,3)$ and $Q(4,1)$.



Homework
3-14, 16, 18, 19, 21, 26, 29

6.1 Exercises

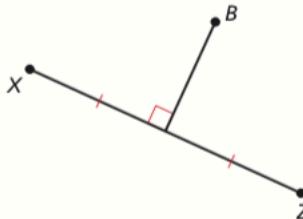
Dynamic Solutions available at BigIdeasMath.com

Vocabulary and Core Concept Check

1. **COMPLETE THE SENTENCE** Point C is in the interior of $\angle DEF$. If $\angle DEC$ and $\angle CEF$ are congruent, then \overrightarrow{EC} is the _____ of $\angle DEF$.

2. **DIFFERENT WORDS, SAME QUESTION** Which is different? Find “both” answers.

Is point B the same distance from both X and Z ?



Is point B equidistant from X and Z ?

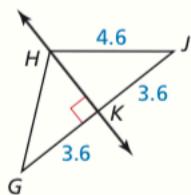
Is point B collinear with X and Z ?

Is point B on the perpendicular bisector of \overline{XZ} ?

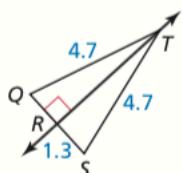
Monitoring Progress and Modeling with Mathematics

In Exercises 3–6, find the indicated measure. Explain your reasoning. (See Example 1.)

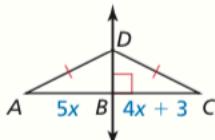
3. GH



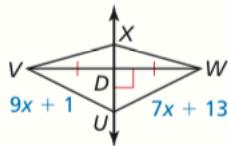
4. QR



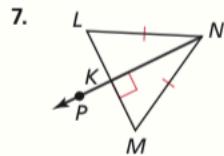
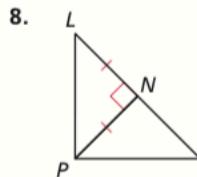
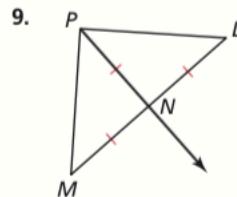
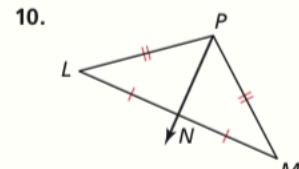
5. AB



6. UW

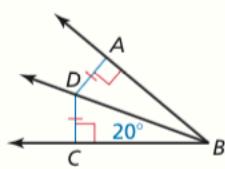


In Exercises 7–10, tell whether the information in the diagram allows you to conclude that point P lies on the perpendicular bisector of \overline{LM} . Explain your reasoning. (See Example 2.)

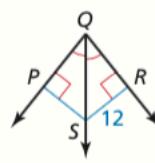


In Exercises 11–14, find the indicated measure. Explain your reasoning. (See Example 3.)

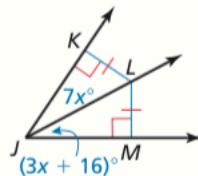
11. $m\angle ABD$



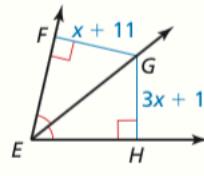
12. PS



13. $m\angle KJL$

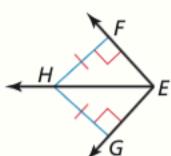


14. FG

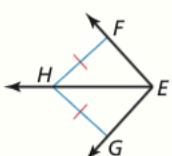


In Exercises 15 and 16, tell whether the information in the diagram allows you to conclude that \overline{EH} bisects $\angle FEG$. Explain your reasoning. (See Example 4.)

15.

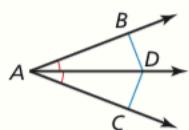


16.

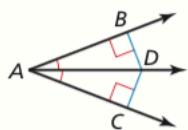


In Exercises 17 and 18, tell whether the information in the diagram allows you to conclude that $DB = DC$. Explain your reasoning.

17.



18.



In Exercises 19–22, write an equation of the perpendicular bisector of the segment with the given endpoints. (See Example 5.)

19. $M(1, 5), N(7, -1)$

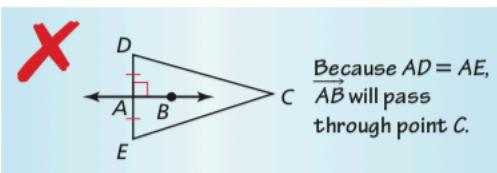
20. $Q(-2, 0), R(6, 12)$

21. $U(-3, 4), V(9, 8)$

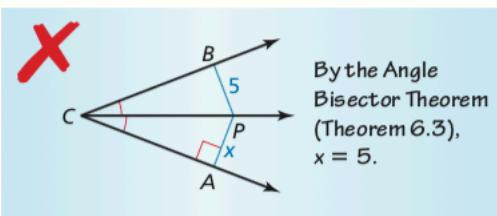
22. $Y(10, -7), Z(-4, 1)$

ERROR ANALYSIS In Exercises 23 and 24, describe and correct the error in the student's reasoning.

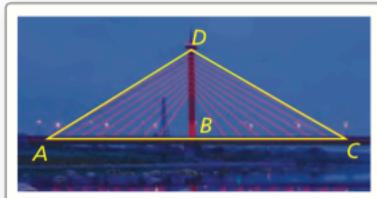
23.



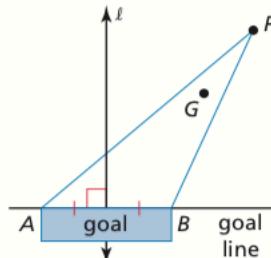
24.



25. **MODELING MATHEMATICS** In the photo, the road is perpendicular to the support beam and $\overline{AB} \cong \overline{CB}$. Which theorem allows you to conclude that $AD \cong \overline{CD}$?



26. **MODELING WITH MATHEMATICS** The diagram shows the position of the goalie and the puck during a hockey game. The goalie is at point G , and the puck is at point P .



a. What should be the relationship between \overline{PG} and $\angle APB$ to give the goalie equal distances to travel on each side of \overline{PG} ?

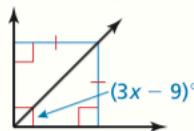
b. How does $m\angle APB$ change as the puck gets closer to the goal? Does this change make it easier or more difficult for the goalie to defend the goal? Explain your reasoning.

27. **CONSTRUCTION** Use a compass and straightedge to construct a copy of \overline{XY} . Construct a perpendicular bisector and plot a point Z on the bisector so that the distance between point Z and \overline{XY} is 3 centimeters. Measure \overline{XZ} and \overline{YZ} . Which theorem does this construction demonstrate?

28. **WRITING** Explain how the Converse of the Perpendicular Bisector Theorem (Theorem 6.2) is related to the construction of a perpendicular bisector.

29. **REASONING** What is the value of x in the diagram?

- (A) 13
- (B) 18
- (C) 33
- (D) not enough information



30. **REASONING** Which point lies on the perpendicular bisector of the segment with endpoints $M(7, 5)$ and $N(-1, 5)$?

- (A) $(2, 0)$
- (B) $(3, 9)$
- (C) $(4, 1)$
- (D) $(1, 3)$

31. **MAKING AN ARGUMENT** Your friend says it is impossible for an angle bisector of a triangle to be the same line as the perpendicular bisector of the opposite side. Is your friend correct? Explain your reasoning.