

6.5 Solving Exponential Equations

Solving Exponential Equations with the **SAME BASE**.

Exponential equations are equations in which variable expressions occur as exponents.

Core Concept

Property of Equality for Exponential Equations

Words Two powers with the *same positive base* b , where $b \neq 1$, are equal if and only if their exponents are equal.

Numbers If $2^x = 2^5$, then $x = 5$. If $x = 5$, then $2^x = 2^5$.

Algebra If $b > 0$ and $b \neq 1$, then $b^x = b^y$ if and only if $x = y$.

Example 1: Solving exponential equations with the same base.

Solve each equation:

a) $3^{x+1} = 3^5$

b) $6 = 6^{2x-3}$

c) $10^{3x} = 10^{2x+3}$

Example 2: Solving Exponential Equations with Unlike Bases

Solve:

a) $5^x = 125$

b) $4^x = 2^{x-3}$

c) $9^{x+2} = 27^x$

Example 3: Solving Exponential Equations when $0 < b < 1$

Solve :

a) $\left(\frac{1}{2}\right)^x = 4$

b) $4^{x+1} = \left(\frac{1}{64}\right)$

Example 4: Solving Exponential Equations by Graphing

Use a graphing calculator to solve:

a) $\left(\frac{1}{2}\right)^{x-1} = 7$

b) $3^{x+2} = x + 1$

Homework

3-17 odd, 21-24, 25-35 odd, 38, 40, 42, 43, 47, 51

6.5 Exercises

Dynamic Solutions available at BigIdeasMath.com

Vocabulary and Core Concept Check

1. **WRITING** Describe how to solve an exponential equation with unlike bases.
2. **WHICH ONE DOESN'T BELONG?** Which equation does *not* belong with the other three?
Explain your reasoning.

$$2^x = 4^x + 6$$

$$5^{3x} + 8 = 5^{2x}$$

$$3^4 = x + 4^2$$

$$2^{x-7} = 2^7$$

Monitoring Progress and Modeling with Mathematics

In Exercises 3–12, solve the equation. Check your solution. (See Examples 1 and 2.)

$$3. 4^{5x} = 4^{10}$$

$$4. 7^{x-4} = 7^8$$

$$5. 3^{9x} = 3^{7x+8}$$

$$6. 2^{4x} = 2^{x+9}$$

$$7. 2^x = 64$$

$$8. 3^x = 243$$

$$9. 7^{x-5} = 49^x$$

$$10. 216^x = 6^{x+10}$$

$$11. 64^{2x+4} = 16^{5x}$$

$$12. 27^x = 9^{x-2}$$

In Exercises 13–18, solve the equation. Check your solution. (See Example 3.)

$$13. \left(\frac{1}{5}\right)^x = 125$$

$$14. \left(\frac{1}{4}\right)^x = 256$$

$$15. \frac{1}{128} = 2^{5x+3}$$

$$16. 3^{4x-9} = \frac{1}{243}$$

$$17. 36^{-3x+3} = \left(\frac{1}{216}\right)^{x+1}$$

$$18. \left(\frac{1}{27}\right)^{4-x} = 9^{2x-1}$$

ERROR ANALYSIS In Exercises 19 and 20, describe and correct the error in solving the exponential equation.

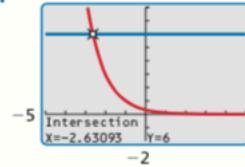
19.

$$5^{3x+2} = 25^{x-8}$$
$$3x+2 = x-8$$
$$x = -5$$

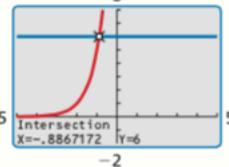
20.

$$\left(\frac{1}{8}\right)^{5x} = 32^{x+8}$$
$$(2^3)^{5x} = (2^5)^{x+8}$$
$$2^{15x} = 2^{5x+40}$$
$$15x = 5x+40$$
$$x = 4$$

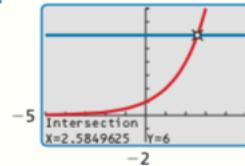
In Exercises 21–24, match the equation with the graph that can be used to solve it. Then solve the equation.

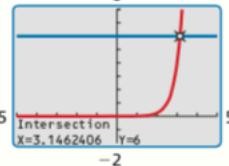

$$21. 2^x = 6$$

$$22. 4^{2x-5} = 6$$


$$23. 5^{x+2} = 6$$

$$24. 3^{-x-1} = 6$$


A.


B.

C.

D.

In Exercises 25–36, use a graphing calculator to solve the equation. (See Example 4.)

$$25. 6^{x+2} = 12$$

$$26. 5^{x-4} = 8$$

$$27. \left(\frac{1}{2}\right)^{7x+1} = -9$$

$$28. \left(\frac{1}{3}\right)^{x+3} = 10$$

$$29. 2^{x+6} = 2x+15$$

$$30. 3x-2 = 5^{x-1}$$

$$31. \frac{1}{2}x-1 = \left(\frac{1}{3}\right)^{2x-1}$$

$$32. 2^{-x+1} = -\frac{3}{4}x+3$$

$$33. 5^x = -4^{-x+4}$$

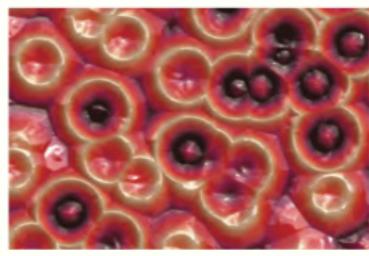
$$34. 7^{x-2} = 2^{-x}$$

$$35. 2^{-x-3} = 3^{x+1}$$

$$36. 5^{-2x+3} = -6^{x+5}$$

In Exercises 37–40, solve the equation by using the Property of Equality for Exponential Equations.

37. $30 \cdot 5^{x+3} = 150$


38. $12 \cdot 2^{x-7} = 24$

39. $4(3^{-2x-4}) = 36$

40. $2(4^{2x+1}) = 128$

41. **MODELING WITH MATHEMATICS** You scan a photo into a computer at four times its original size. You continue to increase its size repeatedly by 100% using the computer. The new size of the photo y in comparison to its original size after x enlargements on the computer is represented by $y = 2^{x+2}$. How many times must the photo be enlarged on the computer so the new photo is 32 times the original size?

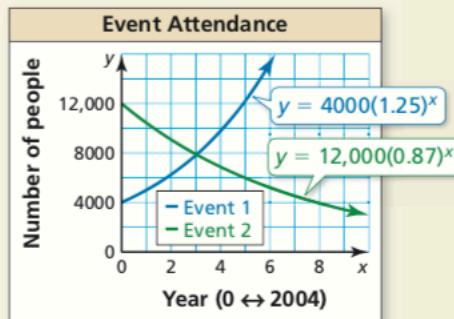
42. **MODELING WITH MATHEMATICS** A bacterial culture quadruples in size every hour. You begin observing the number of bacteria 3 hours after the culture is prepared. The amount y of bacteria x hours after the culture is prepared is represented by $y = 192(4^{x-3})$. When will there be 200,000 bacteria?

In Exercises 43–46, solve the equation.

43. $3^{3x+6} = 27^{x+2}$

44. $3^{4x+3} = 81^x$

45. $4^{x+3} = 2^{2(x+1)}$


46. $5^{8(x-1)} = 625^{2x-2}$

47. **NUMBER SENSE** Explain how you can use mental math to solve the equation $8^{x-4} = 1$.

48. **PROBLEM SOLVING** There are a total of 128 teams at the start of a citywide 3-on-3 basketball tournament. Half the teams are eliminated after each round. Write and solve an exponential equation to determine after which round there are 16 teams left.

49. **PROBLEM SOLVING** You deposit \$500 in a savings account that earns 6% annual interest compounded yearly. Write and solve an exponential equation to determine when the balance of the account will be \$800.

50. **HOW DO YOU SEE IT?** The graph shows the annual attendance at two different events. Each event began in 2004.

a. Estimate when the events will have about the same attendance.
b. Explain how you can verify your answer in part (a).

51. **REASONING** Explain why the Property of Equality for Exponential Equations does not work when $b = 1$. Give an example to justify your answer.

52. **THOUGHT PROVOKING** Is it possible for an exponential equation to have two different solutions? If not, explain your reasoning. If so, give an example.

USING STRUCTURE In Exercises 53–58, solve the equation.

53. $8^{x-2} = \sqrt{8}$

54. $\sqrt{5} = 5^{x+4}$

55. $(\sqrt[5]{7})^x = 7^{2x+3}$

56. $12^{2x-1} = (\sqrt[4]{12})^x$

57. $(\sqrt[3]{6})^{2x} = (\sqrt{6})^{x+6}$

58. $(\sqrt[5]{3})^{5x-10} = (\sqrt[8]{3})^{4x}$

59. **MAKING AN ARGUMENT** Consider the equation $\left(\frac{1}{a}\right)^x = b$, where $a > 1$ and $b > 1$. Your friend says the value of x will always be negative. Is your friend correct? Explain.

Maintaining Mathematical Proficiency

Reviewing what you learned in previous grades and lessons

Determine whether the sequence is arithmetic. If so, find the common difference. (Section 4.6)

60. $-20, -26, -32, -38, \dots$

61. $9, 18, 36, 72, \dots$

62. $-5, -8, -12, -17, \dots$

63. $10, 20, 30, 40, \dots$