

Chapter 7

Polynomial Equations and Factoring

7.1 Adding and Subtracting Polynomials

Finding the Degrees of Monomials

What is a monomial?

What is a degree?

Example 1: Finding the Degrees of Monomials

Find the degree of each monomial.

a. $5x^2$

b. $-\frac{1}{2}xy^3$

c. $8x^3y^3$

d. -3

Classifying Polynomials

What is a term?

What is a polynomial called with two terms?

What does it mean to write a polynomial in standard form?

Example 2: Write the following polynomial in standard form. Classify the polynomial.

$$15x - x^3 + 3$$

Example 3: Classifying Polynomials

Write each polynomial in standard form. Identify the degree and classify each polynomial by the number of terms.

a. $-3z^4$

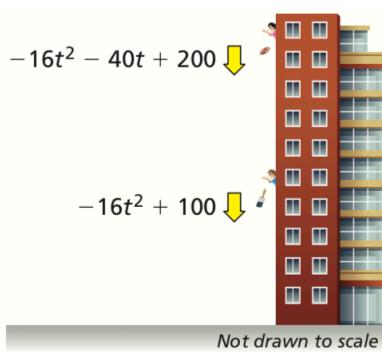
b. $4 + 5x^2 - x$

c. $8q + q^5$

Example 4: Adding Polynomials

a) $(2x^3 - 5x^2 + x) + (2x^2 + x^3 - 1)$

b) $(3x^2 + x - 6) + (x^2 + 4x + 10)$


Example 5: Subtracting Polynomials

a) $(4n^2 + 5) - (-2n^2 + 2n - 4)$

b. $(4x^2 - 3x + 5) - (3x^2 - x - 8)$

Example 6:

A penny is thrown straight down from a height of 200 feet. At the same time, a paintbrush is dropped from a height of 100 feet. The polynomials represent the heights (in feet) of the objects after t seconds.

- Write a polynomial that represents the distance between the penny and the paintbrush after t seconds.
- Interpret the coefficients of the polynomial in part (a).

7.1 Exercises

Dynamic Solutions available at BigIdeasMath.com

Vocabulary and Core Concept Check

- VOCABULARY** When is a polynomial in one variable in standard form?
- OPEN-ENDED** Write a trinomial in one variable of degree 5 in standard form.
- VOCABULARY** How can you determine whether a set of numbers is closed under an operation?
- WHICH ONE DOESN'T BELONG?** Which expression does *not* belong with the other three? Explain your reasoning.

$$a^3 + 4a$$

$$x^2 - 8x$$

$$b - 2^{-1}$$

$$-\frac{\pi}{3} + 6y^8z$$

Monitoring Progress and Modeling with Mathematics

In Exercises 5–12, find the degree of the monomial.
(See Example 1.)

5. $4g$

6. $23x^4$

7. $-1.75k^2$

8. $-\frac{4}{9}$

9. s^8t

10. $8m^2n^4$

11. $9xy^3z^7$

12. $-3q^4rs^6$

In Exercises 13–20, write the polynomial in standard form. Identify the degree and leading coefficient of the polynomial. Then classify the polynomial by the number of terms. (See Examples 2 and 3.)

13. $6c^2 + 2c^4 - c$

14. $4w^{11} - w^{12}$

15. $7 + 3p^2$

16. $8d - 2 - 4d^3$

17. $3t^8$

18. $5z + 2z^3 + 3z^4$

19. $\pi r^2 - \frac{5}{7}r^8 + 2r^5$

20. $\sqrt{7}n^4$

21. **MODELING WITH MATHEMATICS** The expression $\frac{4}{3}\pi r^3$ represents the volume of a sphere with radius r . Why is this expression a monomial? What is its degree?

22. **MODELING WITH MATHEMATICS** The amount of money you have after investing \$400 for 8 years and \$600 for 6 years at the same interest rate is represented by $400x^8 + 600x^6$, where x is the growth factor. Classify the polynomial by the number of terms. What is its degree?

In Exercises 23–30, find the sum. (See Example 4.)

23. $(5y + 4) + (-2y + 6)$

24. $(-8x - 12) + (9x + 4)$

25. $(2n^2 - 5n - 6) + (-n^2 - 3n + 11)$

26. $(-3p^3 + 5p^2 - 2p) + (-p^3 - 8p^2 - 15p)$

27. $(3g^2 - g) + (3g^2 - 8g + 4)$

28. $(9r^2 + 4r - 7) + (3r^2 - 3r)$

29. $(4a - a^3 - 3) + (2a^3 - 5a^2 + 8)$

30. $(s^3 - 2s - 9) + (2s^2 - 6s^3 + s)$

In Exercises 31–38, find the difference. (See Example 5.)

31. $(d - 9) - (3d - 1)$

32. $(6x + 9) - (7x + 1)$

33. $(y^2 - 4y + 9) - (3y^2 - 6y - 9)$

34. $(4m^2 - m + 2) - (-3m^2 + 10m + 4)$

35. $(k^3 - 7k + 2) - (k^2 - 12)$

36. $(-r - 10) - (-4r^3 + r^2 + 7r)$

37. $(t^4 - t^2 + t) - (12 - 9t^2 - 7t)$

38. $(4d - 6d^3 + 3d^2) - (10d^3 + 7d - 2)$

ERROR ANALYSIS In Exercises 39 and 40, describe and correct the error in finding the sum or difference.

39.

$$\begin{aligned}(x^2 + x) - (2x^2 - 3x) &= x^2 + x - 2x^2 - 3x \\ &= (x^2 - 2x^2) + (x - 3x) \\ &= -x^2 - 2x\end{aligned}$$

40.

$$\begin{array}{r} x^3 - 4x^2 + 3 \\ + -3x^3 + 8x - 2 \\ \hline -2x^3 + 4x^2 + 1 \end{array}$$

41. **MODELING WITH MATHEMATICS** The cost (in dollars) of making b bracelets is represented by $4 + 5b$. The cost (in dollars) of making b necklaces is represented by $8b + 6$. Write a polynomial that represents how much more it costs to make b necklaces than b bracelets.

42. **MODELING WITH MATHEMATICS** The number of individual memberships at a fitness center in m months is represented by $142 + 12m$. The number of family memberships at the fitness center in m months is represented by $52 + 6m$. Write a polynomial that represents the total number of memberships at the fitness center.

In Exercises 43–46, find the sum or difference.

43. $(2s^2 - 5st - t^2) - (s^2 + 7st - t^2)$

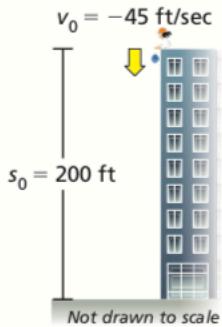
44. $(a^2 - 3ab + 2b^2) + (-4a^2 + 5ab - b^2)$

45. $(c^2 - 6d^2) + (c^2 - 2cd + 2d^2)$

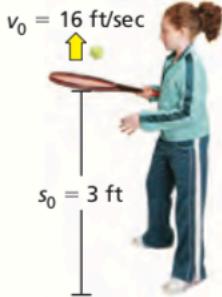
46. $(-x^2 + 9xy) - (x^2 + 6xy - 8y^2)$

REASONING In Exercises 47–50, complete the statement with *always*, *sometimes*, or *never*. Explain your reasoning.

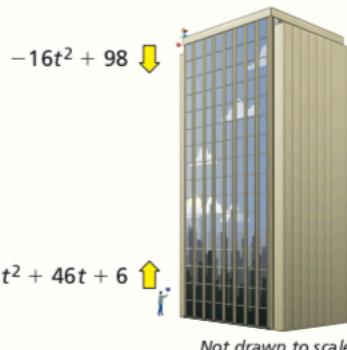
47. The terms of a polynomial are _____ monomials.


48. The difference of two trinomials is _____ a trinomial.

49. A binomial is _____ a polynomial of degree 2.


50. The sum of two polynomials is _____ a polynomial.

MODELING WITH MATHEMATICS The polynomial $-16t^2 + v_0t + s_0$ represents the height (in feet) of an object, where v_0 is the initial vertical velocity (in feet per second), s_0 is the initial height of the object (in feet), and t is the time (in seconds). In Exercises 51 and 52, write a polynomial that represents the height of the object. Then find the height of the object after 1 second.


51. You throw a water balloon from a building.

52. You bounce a tennis ball on a racket.

53. **MODELING WITH MATHEMATICS** You drop a ball from a height of 98 feet. At the same time, your friend throws a ball upward. The polynomials represent the heights (in feet) of the balls after t seconds. (See Example 6.)

a. Before the balls reach the same height, write a polynomial that represents the distance between your ball and your friend's ball after t seconds.

b. Interpret the coefficients of the polynomial in part (a).