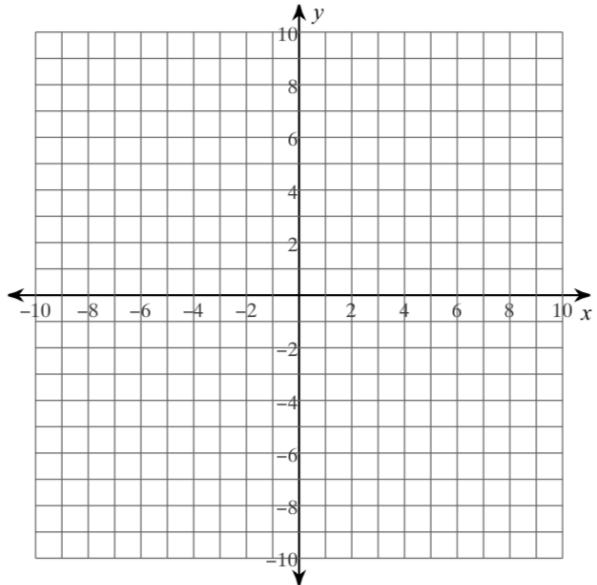


8.3 Graphing $f(x) = ax^2 + bx + c$

Do Now: Graph the quadratic function $f(x) = x^2 + 6x + 5$

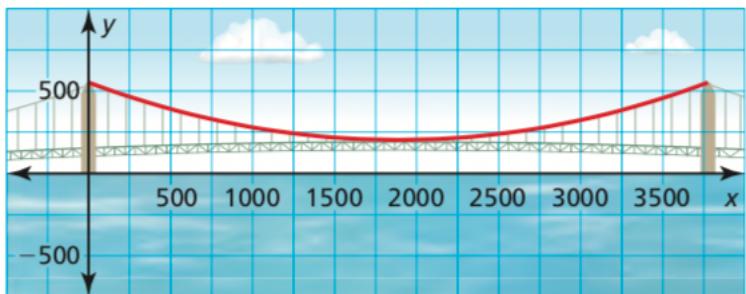

Example 1: Finding the Axis of Symmetry and the Vertex

Find the axis of symmetry and the vertex of the graph of $f(x) = 2x^2 + 8x - 1$

Axis of symmetry formula: _____

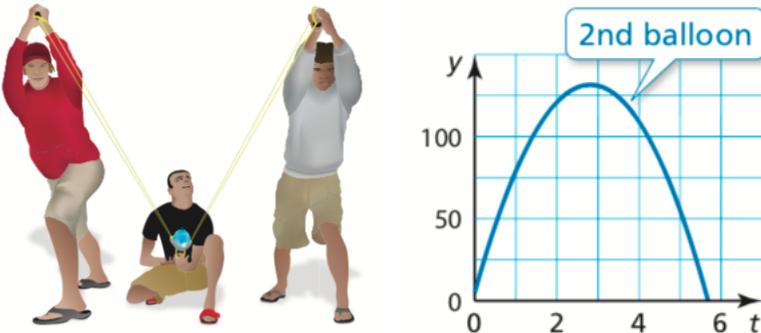
Example 2: Graphing $f(x) = ax^2 + bx + c$

Graph $f(x) = 3x^2 - 6x + 5$. Describe the domain and range.



Example 3: Finding the Maximum or Minimum Value

Tell Whether the function $f(x) = -4x^2 - 24x - 19$ has a minimum value or a maximum value. Then Find the value.


Example 4: Finding the Minimum Value

The suspension cables between two towers of the Mackinac Bridge in Michigan form a parabola that can be modeled by $y = 0.000098x^2 - 0.37x + 552$, where x and y are measured in feet. What is the height of the cable above the water at its lowest point?

Example 5: Modeling with Mathematics

A group of friends is launching water balloons. The function $f(t) = -16t^2 + 80t + 5$ represents the height (in feet) of the first water balloon t seconds after it is launched. The height of the second water balloon t seconds after it is launched is shown in the graph. Which water balloon went higher.

Homework:

3-6, 8-18 even, 21-25 odd, 27, 29, 38**, 43,

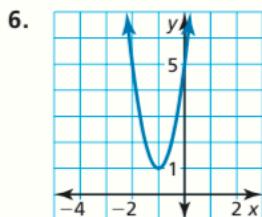
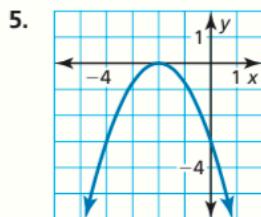
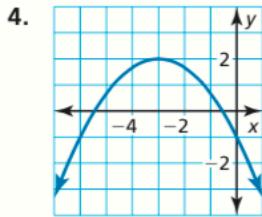
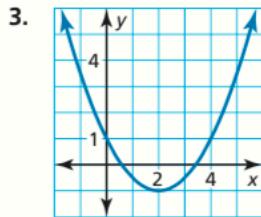
8.3 Exercises

Dynamic Solutions available at BigIdeasMath.com

Vocabulary and Core Concept Check

- VOCABULARY** Explain how you can tell whether a quadratic function has a maximum value or a minimum value without graphing the function.
- DIFFERENT WORDS, SAME QUESTION** Consider the quadratic function $f(x) = -2x^2 + 8x + 24$. Which is different? Find “both” answers.

What is the maximum value of the function?





What is the greatest number in the range of the function?

What is the y -coordinate of the vertex of the graph of the function?

What is the axis of symmetry of the graph of the function?

Monitoring Progress and Modeling with Mathematics

In Exercises 3–6, find the vertex, the axis of symmetry, and the y -intercept of the graph.

In Exercises 7–12, find (a) the axis of symmetry and (b) the vertex of the graph of the function. (See Example 1.)

7. $f(x) = 2x^2 - 4x$

8. $y = 3x^2 + 2x$

9. $y = -9x^2 - 18x - 1$

10. $f(x) = -6x^2 + 24x - 20$

11. $f(x) = \frac{2}{5}x^2 - 4x + 14$

12. $y = -\frac{3}{4}x^2 + 9x - 18$

In Exercises 13–18, graph the function. Describe the domain and range. (See Example 2.)

13. $f(x) = 2x^2 + 12x + 4$

14. $y = 4x^2 + 24x + 13$

15. $y = -8x^2 - 16x - 9$

16. $f(x) = -5x^2 + 20x - 7$

17. $y = \frac{2}{3}x^2 - 6x + 5$

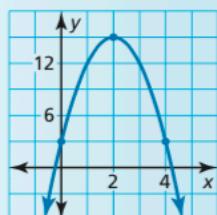
18. $f(x) = -\frac{1}{2}x^2 - 3x - 4$

19. **ERROR ANALYSIS** Describe and correct the error in finding the axis of symmetry of the graph of $y = 3x^2 - 12x + 11$.

$$x = -\frac{b}{2a} = \frac{-12}{2(3)} = -2$$

The axis of symmetry is $x = -2$.

20. **ERROR ANALYSIS** Describe and correct the error in graphing the function $f(x) = x^2 + 4x + 3$.



The axis of symmetry is $x = \frac{b}{2a} = \frac{4}{2(1)} = 2$.

$$f(2) = 2^2 + 4(2) + 3 = 15$$

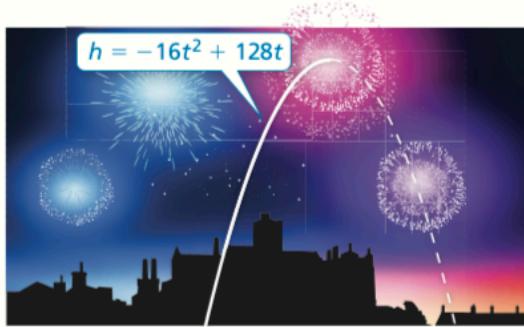
So, the vertex is $(2, 15)$.

The y -intercept is 3. So, the points $(0, 3)$ and $(4, 3)$ lie on the graph.

In Exercises 21–26, tell whether the function has a minimum value or a maximum value. Then find the value. (See Example 3.)

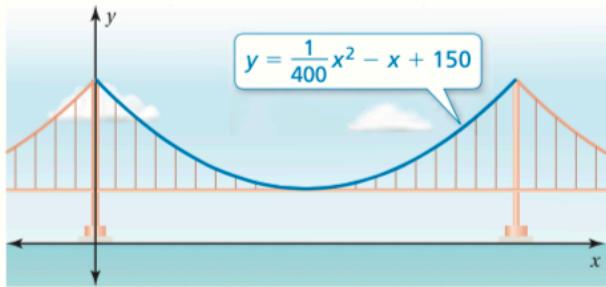
21. $y = 3x^2 - 18x + 15$

22. $f(x) = -5x^2 + 10x + 7$


23. $f(x) = -4x^2 + 4x - 2$

24. $y = 2x^2 - 10x + 13$

25. $y = -\frac{1}{2}x^2 - 11x + 6$


26. $f(x) = \frac{1}{5}x^2 - 5x + 27$

- 27. MODELING WITH MATHEMATICS** The function shown represents the height h (in feet) of a firework t seconds after it is launched. The firework explodes at its highest point. (See Example 4.)

- a. When does the firework explode?
 b. At what height does the firework explode?
28. MODELING WITH MATHEMATICS The function $h(t) = -16t^2 + 16t$ represents the height (in feet) of a horse t seconds after it jumps during a steeplechase.
 a. When does the horse reach its maximum height?
 b. Can the horse clear a fence that is 3.5 feet tall? If so, by how much?
 c. How long is the horse in the air?

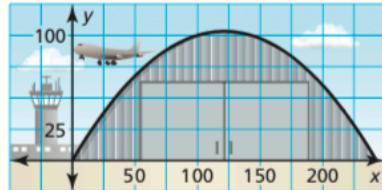
- 29. MODELING WITH MATHEMATICS** The cable between two towers of a suspension bridge can be modeled by the function shown, where x and y are measured in feet. The cable is at road level midway between the towers.

- a. How far from each tower shown is the lowest point of the cable?
 b. How high is the road above the water?
 c. Describe the domain and range of the function shown.
30. REASONING Find the axis of symmetry of the graph of the equation $y = ax^2 + bx + c$ when $b = 0$. Can you find the axis of symmetry when $a = 0$? Explain.

- 31. ATTENDING TO PRECISION** The vertex of a parabola is $(3, -1)$. One point on the parabola is $(6, 8)$. Find another point on the parabola. Justify your answer.

- 32. MAKING AN ARGUMENT** Your friend claims that it is possible to draw a parabola through any two points with different x -coordinates. Is your friend correct? Explain.

USING TOOLS In Exercises 33–36, use the *minimum* or *maximum* feature of a graphing calculator to approximate the vertex of the graph of the function.


33. $y = 0.5x^2 + \sqrt{2}x - 3$

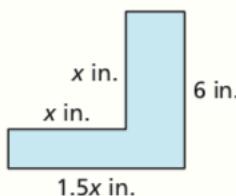
34. $y = -6.2x^2 + 4.8x - 1$

35. $y = -\pi x^2 + 3x$

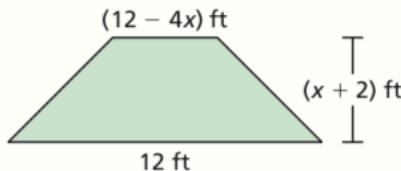
36. $y = 0.25x^2 - 5^{2/3}x + 2$

- 37. MODELING WITH MATHEMATICS** The opening of one aircraft hangar is a parabolic arch that can be modeled by the equation $y = -0.006x^2 + 1.5x$, where x and y are measured in feet. The opening of a second aircraft hangar is shown in the graph. (See Example 5.)

- a. Which aircraft hangar is taller?
 b. Which aircraft hangar is wider?


- 38. MODELING WITH MATHEMATICS** An office supply store sells about 80 graphing calculators per month for \$120 each. For each \$6 decrease in price, the store expects to sell eight more calculators. The revenue from calculator sales is given by the function $R(n) = (\text{unit price})(\text{units sold})$, or $R(n) = (120 - 6n)(80 + 8n)$, where n is the number of \$6 price decreases.

- a. How much should the store charge to maximize monthly revenue?
 b. Using a different revenue model, the store expects to sell five more calculators for each \$4 decrease in price. Which revenue model results in a greater maximum monthly revenue? Explain.



MATHEMATICAL CONNECTIONS In Exercises 39 and 40, (a) find the value of x that maximizes the area of the figure and (b) find the maximum area.

39.

40.

41. **WRITING** Compare the graph of $g(x) = x^2 + 4x + 1$ with the graph of $h(x) = x^2 - 4x + 1$.

42. **HOW DO YOU SEE IT?** During an archery

competition, an archer shoots an arrow. The arrow follows the parabolic path shown, where x and y are measured in meters.

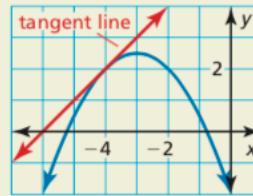
- What is the initial height of the arrow?
- Estimate the maximum height of the arrow.
- How far does the arrow travel?

43. **USING TOOLS** The graph of a quadratic function passes through $(3, 2)$, $(4, 7)$, and $(9, 2)$. Does the graph open up or down? Explain your reasoning.

44. **REASONING** For a quadratic function f , what does $f\left(-\frac{b}{2a}\right)$ represent? Explain your reasoning.

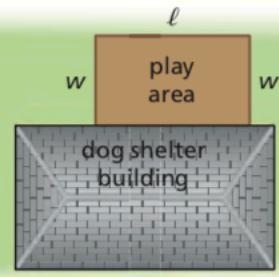
45. **PROBLEM SOLVING** Write a function of the form $y = ax^2 + bx$ whose graph contains the points $(1, 6)$ and $(3, 6)$.

46. **CRITICAL THINKING** Parabolas A and B contain the points shown. Identify characteristics of each parabola, if possible. Explain your reasoning.


Parabola A	
x	y
2	3
6	4

Parabola B	
x	y
1	4
3	-4
5	4

47. **MODELING WITH MATHEMATICS** At a basketball game, an air cannon launches T-shirts into the crowd. The function $y = -\frac{1}{8}x^2 + 4x$ represents the path of a T-shirt. The function $3y = 2x - 14$ represents the height of the bleachers. In both functions, y represents vertical height (in feet) and x represents horizontal distance (in feet). At what height does the T-shirt land in the bleachers?


48. **THOUGHT PROVOKING**

One of two classic problems in calculus is finding the slope of a *tangent line* to a curve. An example of a tangent line, which just touches the parabola at one point, is shown.

Approximate the slope of the tangent line to the graph of $y = x^2$ at the point $(1, 1)$. Explain your reasoning.

49. **PROBLEM SOLVING** The owners of a dog shelter want to enclose a rectangular play area on the side of their building. They have k feet of fencing. What is the maximum area of the outside enclosure in terms of k ? (Hint: Find the y -coordinate of the vertex of the graph of the area function.)

Maintaining Mathematical Proficiency

Reviewing what you learned in previous grades and lessons

Describe the transformation(s) from the graph of $f(x) = |x|$ to the graph of the given function. (Section 3.7)

50. $q(x) = |x + 6|$

51. $h(x) = -0.5|x|$

52. $g(x) = |x - 2| + 5$

53. $p(x) = 3|x + 1|$